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Problem
Let A be an n by m matrix with n < m, and rank(A)=n.
We want to solve

Ax = b, where b is a data or signal vector,

and x is the solution with the fewest number of non-
zero entries possible, that is, the “sparsest” one.
Observations:
- A is underdetermined and, since rank(A)=n,
there is an infinite number of solutions. Good!
- How do we find the “sparsest” solution? What does
this mean in practice? Is there a unique sparsest
solution?
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But, why do we care?

231 kb, uncompressed,
320x240x3x8 bit

74 kb, compressed 3.24:1
JPEG
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“Sparsity” equals compression
Both JPEG and JPEG2000 achieve their compression
mainly because at their core one finds a linear transform
(DCT and DWT, respectively) that reduces the number
of non-zero entries required to represent the data, within
an acceptable error.

We can then think of signal compression in terms of our
problem

Ax = b, x is sparse, b is dense, store x!
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Definitions of “sparse”
- Convenient to introduce the l0 “norm” [1]:

||x||0 = # {k : xk ≠ 0}

- (P0):   minx ||x||0  subject to  ||Ax - b||2 = 0

- (P0
ε):   minx ||x||0  subject to  ||Ax - b||2 < ε

Observations: In practice, (P0 
ε) is the working

definition of sparsity as it is the only one that is
computationally practical. Solving (P0 

ε) is NP-hard [2].
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Finding sparse solutions:OMP
Orthogonal Matching Pursuit algorithm:



5/10/11 AMSC 663/664 7

Implementation Fine Tuning
My initial OMP implementation wasn’t optimized for
speed. I made some improvements:

The core of the algorithm is found in the following three
steps. Modifying the approach to each of them cut
execution times considerably.
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Implementation Fine Tuning,
Round 1: ompQRf

The first improvement came from computing
norm(rk-1) |cos(θj)|, where θj is the angle between aj and
rk-1. This number reflects how good an approximation to the
residue zj aj is, and it is faster to compute than ε(j).

We also kept track of the best approximant during the
'Sweep' so that 'Update Support' is done in a more efficient
way compared to what we had done in ompQR.

Finally, we sweep only on the set of columns that have
not been added to the support set, resulting in further time
gains on the 'Sweep' step when k > 1.
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Implementation Fine Tuning,
Round 2: ompQRf2

We don't build explicitly Ak as was done in ompQR or
ompQRf, we now update Q and R at each step k such that
Ak = Q’R’ = F(Q,R). This way we don't have to perform a
complete QR decomposition of Ak at step k as was done in
those algorithms. This saves time too.

Q’R’ = QHT(R | HTw) = Q(HTR | H2w) = (QR | Qw)
 = (Ak-1 | QQTajk) = (Ak-1 | ajk) = Ak

where Q’ = QHT, R’ = (R | Hw), and w = (ajk
TQ)T

and HT = H, H2 = I, HR = R, with Hw = v, v = (#,...,#,0,...,0)T

  k n-k



5/10/11 AMSC 663/664 10

Implementation Fine Tuning,
Round 3: ompQRf3

Finally, we heed the advice of Matlab to allocate some
variables for speed, this change saves time too:

Runtimes for 'experiment.m’ (k = 2)

ompQR 617.802467 seconds
ompQRf 360.192118 seconds, 1.715 speedup
ompQRf2 308.379138 seconds, 1.168 speedup
ompQRf3 298.622174 seconds, 1.032 speedup

Total speedup from ompQR to ompQRf3: 2.068
(Matlab version 2010b)
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Definition: The mutual coherence of a matrix A is the
number

Theorem: If x solves Ax = b, and ||x||0 < (1+µ(A)-1)/2,
then x is the sparsest solution. That is, if y ≠ x also solves
the equation, then ||x||0 < ||y||0.

Theorem: For a system of linear equations Ax = b (A an n
by m matrix, n < m, and rank(A) = n), if a solution x exists
obeying ||x||0 < (1+µ(A)-1)/2, then an OMP run with
threshold parameter ε0 = 0 is guaranteed to find x exactly. 

Implementation and Validation
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Implementation and Validation
In light of these theoretical results, we can envision the
following roadmap to validate an implementation of OMP.

- We have a simple theoretical criterion to guarantee both
solution uniqueness and OMP convergence:

If x is a solution to Ax = b, and ||x||0 < (1+µ(A)-1)/2,
then x is the unique sparsest solution to Ax = b and OMP
will find it.

- Hence, given a full-rank n by m matrix A (n < m), compute
µ(A), and find the largest integer k smaller than or equal
to (1+µ(A)-1)/2. That is, k = floor((1+µ(A)-1)/2).
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Implementation and Validation
- Build a vector x with exactly k non-zero entries and
produce a right hand side vector b = Ax. This way, you
have a known sparsest solution x to which to compare the
output of any OMP implementation.

- Pass A, b, and ε0 to OMP to produce a solution vector
xomp = OMP(A,b,ε0).

- If OMP terminates after k iterations and ||Axomp - b|| < ε0,
for all possible x and ε0 > 0, then the OMP implementation
would have been validated.

Caveat: The theoretical proofs assume infinite precision.
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Validation Results
We ran two experiments:

1) A ∈ R100x200, with entries in N(0,1) i.i.d. for which
µ(A) = 0.3713, corresponding to k = 1 ≤ Κ.

2) A ∈ R200x400, with entries in N(0,1) i.i.d. for which
µ(A) = 0.3064, corresponding to k = 2 ≤ Κ.

Observations:
- A will be full-rank with probability 1 [1].
- For full-rank matrices A of size n x m, the mutual
coherence satisfies µ(A) ≥ √{(m - n)/(n⋅(m - 1))} [4]. That
is, the upper bound of Κ = (1 + µ(A)-1)/2 can be made
as big as needed, provided n and m are big enough.



5/10/11 AMSC 663/664 15

Validation Results
For each matrix A, we chose 100 vectors with k non-zero
entries whose positions were chosen at random, and
whose entries were in N(0,1).

Then, for each such vector x, we built a corresponding
right hand side vector b = Ax.

Each of these vectors would then be the unique sparsest
solution to Ax = b, and OMP should be able to find them.

Finally, given ε0 > 0, if our implementation of OMP were
correct, it should stop after k steps (or less), and if
xOMP = OMP(A,b,ε0), then ||b - AxOMP|| < ε0.
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Validation Results
k = 1
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Validation Results
k = 1
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Validation Results
k = 1
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Validation Results
k = 1
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Validation Results
k = 1
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Validation Results
k = 2
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Validation Results
k = 2
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Validation Results
k = 2
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Validation Results
k = 2
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Validation Results
k = 2
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Reproducing Paper Results

[1] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of
systems of equations to sparse modeling of signals and images, SIAM
Review, 51 (2009), pp. 34–81.

For the first portion of our testing protocol, we set to
reproduce the experiment described in section (3.3.1) of [1],
limited to the results obtained for OMP.

Ax = b, where A is 100 x 200, each column i.i.d. N(0,1), and
x has k non-zero entries chosen at random and i.i.d. N(0,1).

Repeat 100 times, for each k = 1 to 70, the following
experiment and count the number of successes:
With b having been set to Ax, does xomp = omp(A,b,1e-5)
converge to x within the given tolerance?
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Reproducing Paper Results

SolveOMP is SparseLabʼs implementation of OMP (http://sparselab.stanford.edu/)
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Signal Compression: setup
Consider the matrix A = [ DCT Haar ], where DCT is the
basis of Discrete Cosine Transform waveforms, and Haar
is the basis generated by the Haar wavelet.

DCT Haar
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Signal Compression: images
We selected 5 natural images to test the compression
properties of A, and compare to compression via DCT or
Haar alone, i.e. B = [DCT], or C = [Haar]

Lena
Peppers

Boat Elaine

Barbara
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Signal Compression: Barbara
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Signal Compression: Boat
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Signal Compression: Elaine
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Signal Compression: Lena
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Signal Compression: Peppers
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Error Estimation
Peak Signal-to-Noise Ratio (PSNR):

PSNR = 20 log10(MAXX / √MSE), (units in dB)

with MAXX = 255, and MSE = ∑i,j (X(i,j) - Y(i,j))2 /nm.

Structural Similarity (SSIM), and Mean Structural
Similarity(MSSIM) indices [8]:
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Error Estimation
Ideal error distribution. Consider an LxL image that has
been linearized to a vector b of length L2. Assume that
the OMP approximation within ε has distributed the error
evenly, that is, if y = Axomp

|| Axomp - b ||2 < ε ⇔ || y - b ||22 < ε2

           ⇔ ∑j = 1,...,L
2 (yj - bj)2 < ε2

           ⇔ L2 c2 < ε2

           ⇔ c < ε/L

That is, if we want to be within c units from each pixel, we
have to choose a tolerance ε such that c is equal to ε/L.
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Signal Compression: PSNR
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Signal Compression: PSNR
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Signal Compression: SSIM
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Signal Compression: SSIM



5/10/11 AMSC 663/664 41

Error Comparison
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Error Comparison: Barbara
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Error Comparison: Boat
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Error Comparison: Elaine



5/10/11 AMSC 663/664 45

Error Comparison: Lena
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Error Comparison: Peppers
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Visual overview: Boat
ε = 200, c = 25
PSNR = 25.2711
MSSIM = 0.6006
Comp. Ratio = 0.0217
Termination: ||.||2
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Visual overview: Boat
ε = 64, c = 8
PSNR = 31.7332
MSSIM = 0.8222
Comp. Ratio = 0.0710
Termination: ||.||2
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Visual overview: Boat
ε = 32, c = 4
PSNR = 36.6020
MSSIM = 0.9214
Comp. Ratio = 0.1608
Termination: ||.||2
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Visual overview: Boat
ε = 0.92
PSNR = 34.1405
MSSIM = 0.9355
Comp. Ratio = 0.1595
Termination: ||.||ssim
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Visual overview: Boat
ε = 20, c = 2.5
PSNR = 40.4636
MSSIM = 0.9668
Comp. Ratio = 0.2628
Termination: ||.||2
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Visual overview: Barbara
ε = 32, c = 4
PSNR = 36.9952
MSSIM = 0.9447
Comp. Ratio = 0.1863
Termination: ||.||2
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Visual overview: Barbara
ε = 0.94
PSNR = 32.1482
MSSIM = 0.9466
Comp. Ratio = 0.1539
Termination: ||.||ssim
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Future Work

-Compression encoding, how to?

-From frame theory perspective, what can we say?

-Can we do better than Haar?

-Uncertainty Principle, what is its role?



5/10/11 AMSC 663/664 55

References
[1] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems
of equations to sparse modeling of signals and images, SIAM Review, 51 (2009),
pp. 34–81.

[2] B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM Journal
on Computing, 24 (1995), pp. 227-234.

[3] G. W. Stewart, Introduction to Matrix Computations, Academic Press, 1973.

[4] T. Strohmer and R. W. Heath, Grassmanian frames with applications to coding
and communication, Appl. Comput. Harmon. Anal., 14 (2004), pp. 257-275.

[5] D. S. Taubman and M. W. Mercellin, JPEG 2000: Image Compression
Fundamentals, Standards and Practice, Kluwer Academic Publishers, 2001.

[6] G. K. Wallace, The JPEG still picture compression standard, Communications of
the ACM, 34 (1991), pp. 30-44.

[7] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1998.

[8] Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, Image quality
assessment: from error visibility to structural similarity, IEEE Transactions on Image
Processing , vol.13, no.4 pp. 600- 612, April 2004.
https://ece.uwaterloo.ca/~z70wang/research/ssim/index.html


